PROGRAMME DE COLLES DE CHIMIE PC*1

SEMAINE N°8: 24 AU 29 NOVEMBRE

Formules de Lewis de la semaine : NH₄⁺, CO, SF₆, HCN, XeO₄, HNO₃, H₂SO₄, IF₅, XeO₂, NO₂⁺, HSO₄⁻, CCl₄ ; XeF₂, NO₂, H₂S, I₃⁻ ; XeO₃, N₂O₄, O₃.

COURS

CHAPITRE 1 : ORBITALES ATOMIQUES

- I. Préliminaires (pas de question de cours sur ce paragraphe)
- II. Description probabiliste de l'atome (pas de question de cours sur ce paragraphe)
- III. Modèle quantique de l'atome d'hydrogène
- \rightarrow seule question de cours possible sur le paragraphe III.2 : « représentations conventionnelles des OA s, p »
 - III.3 Cas des hydrogénoïdes
- IV. Modèle quantique pour les atomes polyélectroniques
 - IV.1 Position du problème
 - IV.2 Approximation orbitalaire ou monoelectronique
 - IV.3 Résolution de l'équation de Schrödinger
 - IV.4 Configurations électroniques
- V. Architecture du tableau périodique des éléments
 - V.1 Construction historique
 - V.2 Configuration électronique et tableau périodique des éléments
 - V.3 Ensemble d'éléments particuliers
- VI. Évolution de quelques propriétés dans la classification périodique des éléments
 - VI.1 Évolution du nombre quantique principal n et de la charge effective Z*
 - VI.2 Énergie des OA et électronégativité
 - VI.2.1 Énergie des OA
 - VI.2.2 Évolution dans la classification périodique
 - VI.2.3 Électronégativité
 - VI.3 Rayon atomique et polarisabilité
 - VI.3.1 Rayon orbitalaire et rayon atomique
 - VI.3.2 Évolution dans la classification périodique
 - VI.3.3 Polarisabilité
 - VI.4 Bilan général

CHAPITRE 2 : ORBITALES MOLECULAIRES DES MOLECULES DIATOMIQUES

- I. Position du problème Hypothèses fondamentales
 - I.1 Approximation de Born Oppenheimer
 - I.2 Approximation monoélectronique ou orbitalaire
 - I.3 Méthode CLOA (ou LCAO)
- II. Interaction de deux OA identiques sur deux centres
 - II.1 Application à la molécule de dihydrogène
 - II.2 Densité de probabilité de présence
 - II.3 Représentation des OM
- III. Énergie des orbitales moléculaires

- III.1 Molécules homonucléaires : interaction de 2 OA identiques
 - III.1.1 Niveaux d'énergie des OM
 - III.1.2 Remplissage des niveaux d'énergie des OM
 - III.1.3 Application aux molécules de la 1ère ligne du tableau périodique
- III.2 Molécules hétéronucléaires : interaction de 2 OA différentes
 - III.2.1 Niveaux d'énergie des OM
 - III.2.2 Forme des OM
- IV. Recouvrement des orbitales atomiques
 - IV.1 Critère du recouvrement maximal
 - IV.1.1 Seules les orbitales de valence peuvent se recouvrir
 - IV.1.2 Seules les orbitales de mêmes étiquettes de symétrie peuvent se recouvrir
 - IV.2 Les deux types d'orbitales moléculaires
 - IV.2.1 OM σ : recouvrement axial d'OA
 - IV.2.2 OM π : recouvrement latéral d'OA
 - IV.2.3 Comparaison du recouvrement axial et du recouvrement latéral
- V. Application aux molécules diatomiques
 - V.1 Molécules diatomiques homonucléaires A₂
 - V.1.1 Principes de construction des diagrammes d'OM
 - V.1.2 Exemple de H₂
- → Le diagramme de H₂ doit être connu par cœur
 - V.1.3 Molécules A2 issues d'atomes de la deuxième ligne du tableau périodique
- \rightarrow Les diagrammes du cours O₂, N₂, F₂, Cl₂, doivent savoir être reconstruits sans indication et sans interaction s-p
- → La notion de diagramme corrélé/non corrélé est hors programme
 - V.2 Molécules diatomiques hétéronucléaires AB
 - V.2.1 Molécules de type AH
- \rightarrow Le diagramme du cours HF doit savoir être reconstruit sans indication et sans interaction à 3 OA
 - V.2.2 Molécules de type AB avec A,B \neq H
- → Aucun diagramme à connaître dans cette catégorie

TRAVAUX PRATIQUES

CCM (Fiche22)

Recristallisation (Fiche 27)

EXERCICES

Structure de la matière : chapitres 1 et 2

- → Pas d'exercice mettant en jeu les expressions analytiques des OA
- → Chapitre 1 : privilégier des exercices autour des configurations électroniques et du tableau périodique
- \rightarrow Chapitre 2: seules constructions de diagramme *ex nihilo* autorisées: A_2 ou AB (en négligeant les interactions s-p); AH (sans interaction à 3 OA). Pour étudier d'autres cas, on donnera le diagramme déjà ou en partie construit

Révisions PCSI: structure de la matière (modèle de Lewis, méthode VSEPR, mésomérie, interactions non covalentes)

→ Un exercice obligatoire sur un de ces thèmes si pas abordé en question de cours